

IJP 10054

Rapid Communication

Computation of mitomycin C- γ -cyclodextrin complex stability constant

O.A.G.J. van der Houwen ^a, O. Bekers ^b, A. Bult ^a, J.H. Beijnen ^c and W.J.M. Underberg ^a

^a Department of Pharmaceutical Analysis, Faculty of Pharmacy, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (The Netherlands), ^b Leyenburg Hospital, Leyweg 275, 2545 CH Den Haag (The Netherlands) and ^c Slotervaart Hospital / Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam (The Netherlands)

(Received 24 September 1992)

(Accepted 1 October 1992)

In a preliminary paper from our laboratory we reported the stabilization of mitomycin C (MMC) (Fig. 1) on complexation with γ -cyclodextrin (γ -CyD) in aqueous acidic solutions (Bekers et al., 1989). Apart from effects on the stability of MMC, complex stability constants, K_s , were also obtained by using the Lineweaver-Burk equation (Lineweaver and Burk, 1934). These K_s values, however, appeared to be dependent on the pH of the degradation media (Table 1), which is inconsistent with the nature of this equilibrium constant. The reason for this influence is the fact that at pH values around the pK_a of MMC ($pK_a = 2.8$; Beijnen et al., 1986) two species are present: a cationic species ($MMCH^+$) and a neutral species (MMC). Probably only the latter will be subject to γ -CyD complexation. Moreover, the rate constants for degradation of both species are substantially different, which turns k_{obs}^0 , the observed rate constant for the free drug, into a heterogeneous, pH-dependent term. For this reason, the Lineweaver-Burk equation cannot be employed straightforwardly to obtain reliable values for K_s . Values for K_s found in the pH region $0.8 < \text{pH} < 4.8$ are only constant at constant pH

and are, therefore, referred to as apparent complex stability constants, K'_s . At pH values > 4.8 , the $[\text{MMH}^+]$ becomes negligible and, hence, it can be expected that values for K'_s in this pH region approach the value of the real constant K_s .

To overcome these problems a theoretical approach has recently been developed (Van der Houwen et al., 1991), to calculate complex stability constants for pH-dependent degradations of polybasic weak electrolytes in the presence of a ligand. In the present study, this approach has been applied to MMC complexation with γ -CyD in acidic solutions.

The experimental conditions are described here only briefly; a detailed description has been published in our earlier report (Bekers et al., 1989). On degradation in acidic media MMC shows profound spectral changes. These changes, among which a decrease in absorbance at 363 nm, are suitable to monitor the acidic MMC degradation and to calculate degradation constants. The presence γ -CyD does not alter this spectral behaviour. All kinetic experiments were performed in the dark at 25°C. In the H_0/pH range 0.3–3.0 perchloric acid solutions and in the pH range 3.0–4.8 acetate buffers (0.001 M) were used.

The degradations were followed at fixed H_0/pH values varying from 0.3 to 4.8, at every

Correspondence to: W.J.M. Underberg, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands.

pH with six different γ -CyD concentrations between 0 and 5×10^{-2} M.

The dependence of the observed rate constant, k_{obs} , on the γ -CyD concentration is given in Eqn 1 (Van der Houwen et al., 1991)

$$k_{\text{obs}} = \left[k_{\text{obs}}^{\text{o}} + [\text{CyD}] \cdot \sum_{i=0}^{n+2} (M_i^{\text{CyD}} / [\text{H}^+])^{i-1} \right]$$

$$\left/ \sum_{i=0}^n \left\{ \left(\bigcap_{j=0}^i K_j \right) / [\text{H}^+]^i \right\} \right]$$

$$\left/ \left[1 + [\text{CyD}] \cdot \sum_{i=0}^n \left\{ \left(\bigcap_{j=0}^i K_j \right) \cdot K_i^{\text{CyD}} / [\text{H}^+]^i \right\} \right] \right.$$

$$\left/ \sum_{i=0}^n \left\{ \left(\bigcap_{j=0}^i K_j \right) / [\text{H}^+]^i \right\} \right] \quad (1)$$

where M_i^{CyD} represents the contribution of the degradation of the CyD bound species to the i -th macroreaction constant M_i .

$$\bigcap_{j=0}^i K_j = \text{product } K_0 \cdot K_1 \cdot K_2 \cdots K_i$$

and K_i^{CyD} denotes the complex stability constant of the i -th species of the solute.

This equation can be used for non-linear regression analysis for a series of measurements of the k_{obs} at varying CyD concentrations at fixed pH.

TABLE I

MMC- γ -CyD apparent complex stability constants at various pH values

pH	$K_s' (M^{-1})$
0.3	a
0.8	a
1.8	48
2.8	107
3.8	215
4.8	249

^a K_c not determined since no stabilization occurs

Eqn 1 can be written in a simplified form:

$$k_{\text{obs}} = \frac{k_{\text{obs}}^0 + A \cdot [\text{CyD}]}{1 + B \cdot [\text{CyD}]} \quad (2)$$

The values of A and B , calculated from series of measurements at a number of fixed pH values, are themselves functions of the pH. The contributing constants M_i^{CyD} and K_i^{CyD} can be extracted from the values of A and B obtained, using the functions in the numerator and denominator, respectively, of Eqn 1 by linear regression.

The values of A and B were calculated (Table 2) and used in Eqn 1 to compute the MMC- γ -CyD complex stability constant. By using a model for one protolytic equilibrium, as in this case, a MMC- γ -CyD complex stability constant of 316 M^{-1} has been calculated. This value is, as had already been expected, in reasonable agreement with the K_s' obtained for MMC at pH 4.8, where 1% of the total concentration of MMC still exists in the protonated state. This indicates that the

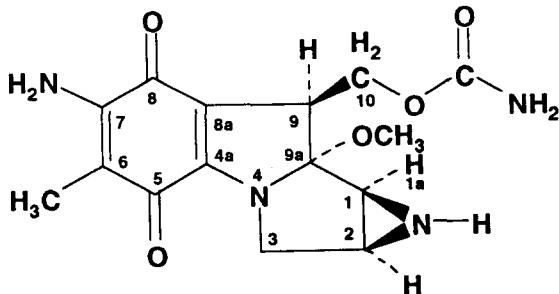


Fig. 1. Structure of mitomycin C.

TABLE 2

Calculated A and B coefficients of MMC in the presence of γ -CyD at various pH values

pH	<i>A</i>	<i>B</i>
0.3	1.06×10^{-1}	3.28×10^1
0.8	5.23×10^{-1}	1.27×10^1
1.8	3.27×10^{-2}	3.86×10^1
2.8	1.16×10^{-2}	3.93×10^2
3.3	3.51×10^{-3}	2.55×10^2
4.8	1.58×10^{-3}	3.93×10^2

theoretical approach developed can be used for practical situations. To prove this extensively, more studies, with various polybasic weak electrolytes in the presence of different CyDs, are currently in progress.

References

Bekers, O., Beijnen, J.H., Groot Bramel, E.H., Otagiri, M., Bult, A. and Underberg, W.J.M., Stabilization of mitomycins on complexation with cyclodextrins in aqueous acidic media. *Int. J. Pharm.*, 52 (1989) 239–248.

Beijnen, J.H., Van der Houwen, O.A.G.J., Rosing, H. and Underberg, W.J.M., A systematic study on the chemical stability of mitomycin A and mitomycin B. *Chem. Pharm. Bull.*, 34 (1986) 2900–2913.

Lineweaver, H. and Burk, D., The determination of enzyme dissociation constants. *J. Am. Chem. Soc.*, 56 (1934) 658–666.

Van der Houwen, O.A.G.J., Bekers, O., Beijnen, J.H., Bult, A. and Underberg, W.J.M., A general approach to the interpretation of pH degradation profiles in the presence of ligands. *Int. J. Pharm.*, 67 (1991) 155–162.